Journal of Fluorine Chemistry, 37 (1987) *21-27*

Received: January 12, 1987; accepted: April 22, 1987

EXCHANGE BETWEEN URANIUM HEXAFLUORIDE AND SOME OF ITS COMPLEXES

S. BROWNSTEIN

Division of Chemistry, National Research Council of Canada, Ottawa, Ont., KlA OR9 (Canada)

SUMMARY

Rapid exchange between free and complexed uranium hexafluoride was observed by ¹⁹F nmr in several systems. The distribution of the uranium containing species was measured in each of the phases for these systems. No significant enrichment was found when the reactants were distributed between the phases in the two phase liquid system sulfur dioxide-dichlorodifluoromethane.

INTRODUCTION

The enrichment of isotopes by chemical exchange was first used for the separation of nitrogen-15 [l]. The principal use of this method to date has been in the separation of isotopes of boron [2]. The underlying theory has been presented but its application to complex systems is fraught with difficulties [2-51. Separation of uranium isotopes by exchange between $U(V) - U(VI)$ [6] and $U(IV) - U(VI)$ [7] has been studied and found to be uneconomical because of long equilibration times. It therefore seemed worthwhile to search for systems in which exchange of uranium between two chemically different uranium containing species was rapid.

Rapid exchange between free and complexed hexafluorides has been observed with Lewis base complexes of tungsten and molybdenum hexafluorides [8]. Uranium hexafluoride has a similar chemical reactivity to these hexafluorides so it is reasonable to look for rapid exchange with uranium hexafluoride

0022-1139/87/\$3.50 **Click** Elsevier Sequoia/Printed in The Netherlands

complexes [9]. Rapid fluorine exchange has been observed in mixtures of bromine trifluoride and uranium hexafluoride [lo].

In a system containing two compounds of uranium, the difference in enthalpy for compound -1 containing U-238 and that containing U-235 can be given as ΔH_1 . Similarly, the enthalpy difference for compound -2 will be ΔH_2 . It then follows that the distribution of, say U-235, between compounds 1 and 2 will follow the Boltzmann distribution, N₂ = N₁.exp- $\frac{(\Delta H_{1} - \Delta H_2)}{DT}$. This means that, provided the enthalpy differences do not change greatly with temperature, the theoretically possible enrichment by selective distribution between compounds 1 and 2 will increase markedly with decrease in temperature. It would therefore be advantageous to choose a system for isotopic enrichment where exchange is fast and solubility is high at as low a temperature as feasible.

EXPERIMENTAL

All manipulations of reagents were done on a hybrid glassmetal vacuum system with careful exclusion of water, as with tungsten and molybdenum hexafluorides [8]. Uranium hexafluoride was used directly as supplied by Var-Lac-Oid Chemical Co. Solvents and other reagents were purified in the usual manner [11,12]. Samples for fluorine resonance studies were prepared as previously described [8]. Fluorine resonance spectra were obtained at 94.1 MHz on a Varian Associates HAlOOD spectrometer modified for a wide sweep range. Chemical shifts are reported in ppm relative to $CFCL_3$. Uranium isotopic analyses were performed on a Varian MAT UF₅ mass spectrometer.

In the distribution studies known quantities of $CF_2C_{2,2}$, SO_2 , and UF_a were added to the reactor and the two phases separated at the given temperature. Each phase was weighed and passed into an excess of concentrated sodium hydroxide solution. The sulfite was converted to sulfate and this and the

22

uranium were analyzed gravimetrically. In every case a satisfactory material balance was obtained compared with the initial quantities of material used. For the solvents alone, known quantities of each were condensed into a container and the consolute temperature was determined visually.

In the enrichment studies a manual cascade of a few stages at -60°C was normally employed to improve the accuracy of the enrichment ratio per stage, α ; where

$\alpha =$ Final isotope ratio - Initial isotope ratio Initial isotope ratio

The UF_c for the isotope ratio measurements was separated from the solvent in the $CF_2C_{k_2}$ phase by fractional distillation and stored, for analysis, in stainless steel containers closed by stainless steel bellows valves.

RESULTS AND DISCUSSION

The very low field, but sharp, fluorine resonance signal in uranium hexafluoride has been explained by low lying excited states which contribute a paramagnetic term to the shielding [13,14]. Since certain of the fluorines in vanadium pentafluoride also exhibit very large chemical shifts to low field **[151,** and low lying excited states are unlikely for this compound, it is possible that the low field chemical shift does not derive from a specific paramagnetic term. Complex formation is suggested by broadening and some displacement of the $UF₆$ fluorine resonance upon addition of an electron donor. The minimum in chemical shift for a ratio of 0.5:1 in the system $UF₆$ -acetonitrile, which is listed in Table 1, suggests that a complex UF_{6} . 2CH₃CN is formed. This complex is insoluble in CFC ℓ_3 at low temperature but is soluble in SO₂C₂F. The complex dissociates upon pumping under vacuum and cannot be isolated. It is also thermally unstable, quickly reacting to give reduced uranium species at room temperature [9], and therefore is

unsuitable for enrichment studies. Fluorine exchange between $UF₆$ and $(18F)$ -labelled BF₃ has been observed in acetonitrile solution $[16]$. Fluorine exchange, by ¹⁹F nmr, has been observed in the present study between UF₆ and AsF₅ or BF₃, but not PF₅, in SO₂ and SO₂C₂F as solvents, without any evidence of complex formation. There is no fluorine exchange nor complex formation with tetrabutylammonium (TBA) PF₆ or TBA TaF₆, but complex formation is observed with TBA AsF₆, TBA SbF₆, TBA NbF₆ and TBA BF,.

The phase diagram for the system $SO_2-CF_2Ck_2$ is shown in Figure 1. Also included on the diagram are measurements made when UF₆, or UF₆-tetraethylammonium (TEA) fluoroborate are dissolved in the system. The partition of UF_f between the two solvent phases is listed in Table 2 on the basis of grams/gram of solvent. The TEA salt remains almost exclusively in the sulfur dioxide rich phase. The solubility of UF_{6} in the pure solvents is presented in Figure 2. Assuming that the soluhilities in the pure solvents are a measure of the preference of $UF₆$ for that solvent, the distribution co-efficient between the two phases in the binary solvent system was calculated and is listed in Table 2 along with the experimental values. The above assumption seems to be reasonable since there is moderate agreement between the calculated and observed values. Similar measurements were also made at lower temperatures with one half an equivalent of TEA UF₆ for each equivalent of UF₆. There is no appreciable change in distribution, as listed in Table 2, indicating that complex formation is at best very slight.

For a 3 stage enrichment cascade with TBABF₄ in the SO₂ rich phase, the average value of α is 1.0009 with U-235 enrichment in the $CF_2C\ell_2$ rich phase. With TEA BF₄ as the added salt, Q is 1.0014 per stage in a 2 stage cascade with U-235 depletion in the CF_2C_2 rich phase. It is therefore concluded that this procedure does not produce significant isotopic enrichment for uranium.

24

TABLE 1

Fluorine resonance results for the UF_{6} -acetonitrile complex

Fig. 1. Consolute temperatures land phase compositions for the system $SO_2-CF_2C\ell_2$.

TABLE 2

Partition of UF₆ between the two phases in the system SO₂-CF₂C_{k₂}

	UF_6 in CF_2C_{22} Phase	Found (Solvents) alone)	Found with TEA UF ₆
$T^{\bullet}C$	UF_6 in SO ₂ Phase Calculated		
-42	.80	1.11	
-50	.92	0.62	
-57	.93	0.94	
-66	1.00		1.00
-77	0.96		0.78
-82	0.88		1.22

Fig. 2. The solubility of UF_6 in SO_2 and $CF_2C\ell_2$.

26

75.

H.C. Urey, J.R. Huffman, H.G. Thode and M. Fox, J. Chem. 1 Phys., 5 (1937) 856. 2 G.M. Begun and A.A. Palko, J. Chem. Phys., 47 (1967) 967. 3 A.C. Rutenberg and J.S. Drury., J. Inorg. Nucl. Chem., 31 2289 (1969). J. Bigeleisen., J. Inorg. Nucl. Chem., 34 (1972) 2505. 4 J. Bigeleisen and T. Ishida, J. Am. Chem. Soc. 95 (1973) 5 6155. P.R. Ogle, Jr., IJ.S. Pat. No. 3 794 716 (26 Feb 1974). 6 T.M. Florence, G.E. Batley, A. Ekstrom, J.J. Fardy and 7 Y.J. Farrar., J. Inorg. Nucl. Chem., 37 (1975)1961. S. Brownstein, B.H. Christian, G. Latremouille and 8 A. Steigel., Can. J. Chem., 54 (1976) 2343. J.A. Berry, R.T. Poole, A. Prescott, D.W.A. Sharp and 9 J.M. Winfield., J.C.S. Dalton (1976) 272. J.N. Shoolery, E.I. Goodman and J. Littman., U.S. AEC-BNL-**10** 2382. 11 S. Brownstein, Can. J. Chem. 47 (1969) 605. S. Brownstein, Inorg. Chem. 12 (1973) 584. 12 J.H. Shoolery, Varian Technical Bulletin 1 , 3. 13 'High Resolution Nuclear Magnetic Resonance' by J.A. Pople, 14 W.G. Schneider and H.J. Berstein, McGraw-Hill, Toronto (1959). S. Brownstein and G. Latremouille, Can. J. Chem., 52 (1974) 15 2236. D.K. Sanyal and J.M. Winfield., J. Fluorine Chem. 24 (1984) 16

27